N-H Insertion reactions of rhodium carbenoids. Part 2. ${ }^{1}$ Preparation of N-substituted amino(phosphoryl)acetates (N-substituted phosphorylglycine esters) ${ }^{2}$

Leigh Ferris, ${ }^{a}$ David Haigh ${ }^{\boldsymbol{b}}$ and Christopher J. Moody ${ }^{*},{ }^{+},{ }^{a}$
${ }^{a}$ Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
${ }^{b}$ SmithKline Beecham Pharmaceuticals, Great Burgh, Yew Tree Bottom Road, Epsom, Surrey KTI8 5XQ, UK

Abstract

Rhodium(II) acetate-catalysed reaction of ethyl 2-diazo-2-diethoxyphosphorylacetate 2 with carbamates, amides, ureas or anilines gives a range of N -substituted 2-amino-2-diethoxyphosphorylacetates 3-18 by $\mathrm{N}-\mathrm{H}$ insertion reaction of the intermediate rhodium carbenoid.

N -Acylaminophosphonates (phosphorylglycines) 1 are useful

1
intermediates in synthesis. Originally prepared and used by the Merck group in the synthesis of cephalothin, ${ }^{3,4}$ they have subsequently been employed in the preparation of other cephalosporins and analogues. ${ }^{5-9}$ However, it is in the preparation of dehydro amino acids by the Wadsworth-Emmons reaction that phosphorylglycine derivatives have found the widest application. ${ }^{10-28}$
Phosphorylglycines were originally prepared by methoxycarbonylation of the anion of the Schiff base of diethyl (aminomethyl)phosphonate, ${ }^{3}$ but are more commonly obtained by Michaelis-Arbusov reaction of trialkyl phosphites with α-haloor α-alkoxy-glycine esters ${ }^{8,10,11,29-33}$ or with aziridines. ${ }^{34}$ Other preparative methods include the electrophilic amination of phosphorylacetates, ${ }^{35,36}$ the oximation of phosphorylacetates followed by reduction, ${ }^{37,38}$ the addition of diethyl phosphite anion to the Schiff base of ethyl glyoxalate ${ }^{39}$ and the $\mathrm{Me}_{3} \mathrm{SiBr}$ promoted conversion of phosphoranes into phosphonates. ${ }^{27}$ These methods are summarised in Scheme 1.

Scheme 1
\dagger Present address: Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK

Two slightly conflicting reports also describe the preparation of amino(phosphoryl)acetates from phosphorylacetate by reaction with a sulfonyl azide followed by reduction. Thus ethyl diethoxyphosphorylacetate is reported to react with trifluoromethanesulfonyl azide to give ethyl 2 -azido-2-diethoxyphosphorylacetate, $\mathrm{EtO}_{2} \mathrm{CCHN}_{3} \mathrm{PO}(\mathrm{OEt})_{2}$, hydrogenation ($\mathrm{Pd}-\mathrm{C}$) of which gave the corresponding α-amino compound. ${ }^{39}$ On the other hand, the closely related reaction of tert-butyl diethoxyphosphorylacetate, $\mathrm{Bu}^{\prime} \mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{PO}(\mathrm{OEt})_{2}$, with toluene-psulfonyl azide was reported to give the 2-diazo-2-diethoxyphorylacetate ${ }^{38}$ again hydrogenation over $\mathrm{Pd}-\mathrm{C}$ gave the 2-amino-2-diethoxyphosphorylacetate.
In view of the continuing interest in phosphorylglycines and in aminophosphonates in general, ${ }^{40}$ we decided to investigate the $\mathrm{N}-\mathrm{H}$ insertion reactions of rhodium carbenoids derived from readily available ethyl 2-diazo-2-diethoxyphosphorylacetate as a simple route to a range of N -acyl- and N -aryl-amino(phosphoryl)acetates. We now report our results in detail. ${ }^{2}$

Results and discussion

Insertion reactions of metallocarbenoids are widely used in synthesis, and a comprehensive discussion of the $\mathrm{N}-\mathrm{H}$ insertion reaction is included in the preceding paper. ${ }^{1}$ However, very few of these reactions involve diazophosphonates, and therefore a study of the $\mathrm{N}-\mathrm{H}$ insertion reactions of ethyl 2-diazo-2-diethoxyphosphorylacetate 2 was initiated. Compound 2 was prepared from ethyl diethoxyphosphorylacetate in $60-63 \%$ yield by diazo transfer reaction using toluene-p-sulfonyl azide. ${ }^{41,42}$ Although both the diazo transfer reagent and the diazo compound are potentially explosive (CAUTION), with due regard for the hazards, we carried out the preparation on the 0.2 mol scale without incident. As an alternative to toluene-p-sulfonyl azide, the commercially available diazo transfer reagent, azidotris(diethylamino)phosphonium bromide, ${ }^{43}$ can be used. This gives an improved yield of 93% (on a 8 mmol scale). ${ }^{44}$
The rhodium(II) acetate-catalysed decomposition of 2 was investigated in the presence of a wide range of $\mathrm{H}-\mathrm{H}$ compounds (Scheme 2). The reactions were carried out in boiling

2
3-18
Scheme 2

Table 1 Synthesis of compounds 3-18

Entry	R^{1}	R^{2}	Product	Yield (\%)
1	$\mathrm{Bu}^{\prime} \mathrm{O}_{2} \mathrm{C}$	H	$\mathbf{3}$	75
2	$\mathrm{BnO}_{2} \mathrm{C}$	H	$\mathbf{4}$	78
3	Ac	H	$\mathbf{5}$	79
4	EtCO	H	$\mathbf{6}$	56
5	Bu CO	H	$\mathbf{7}$	76
6	MeNHCO	H	$\mathbf{8}$	40
7	Pr	$\mathrm{Bu}^{\prime} \mathrm{O}_{2} \mathrm{C}$	$\mathbf{9}$	46
8	Ph	H	$\mathbf{1 0}$	72
9	$4-\mathrm{MeC}_{6} \mathrm{H}_{4}$	H	$\mathbf{1 1}$	73
10	$4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	H	$\mathbf{1 2}$	70
11	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	H	$\mathbf{1 3}$	81
12	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	H	$\mathbf{1 4}$	71
13	$2-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	H	$\mathbf{1 5}$	74
14	$2-\mathrm{BrC}_{6} \mathrm{H}_{4}$	H	$\mathbf{1 6}$	70
15	$2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	H	$\mathbf{1 7}$	71
16	$2-\mathrm{Cl}_{3}-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$	H	$\mathbf{1 8}$	61

toluene; diazophosphonates are generally more stable than simple diazo esters, ${ }^{45}$ and no reaction occurred at room temperature. Likewise, there was no reaction at the elevated temperature in the absence of the rhodium catalyst.

Reaction with tert-butyl or benzyl carbamate gave the corresponding $\mathrm{N}-\mathrm{H}$ insertion products 3 and 4 in good yield (Table 1). In the case of the Z protected phosphorylglycine, the reaction was carried out on a 2 g scale without reduction in yield. Other N-acyl compounds also react: simple amides such as acetamide, propionamide and isovaleramide gave the corresponding $\quad N$-acylaminophosphorylacetates $5-7$, and N methylurea gave the carbamoylamino derivative 8 in modest yield (Table 1), with no product resulting from insertion into the $\mathrm{MeN}-\mathrm{H}$ bond being observed. Attempts to effect $\mathrm{N}-\mathrm{H}$ insertion reactions on phthalimide, pyrrolidin-2-one or azetidin-2one using 2 were unsuccessful. The lactams pyrrolidin-2-one and piperidin-2-one are known to undergo $\mathrm{N}-\mathrm{H}$ insertion reactions with the carbenoid-derived by copper-catalysed decomposition of methyl diazoacetate, although the yields are poor (2 and 18% respectively). ${ }^{46}$ Likewise, there are reports of intermolecular insertions into the $\mathrm{N}-\mathrm{H}$ bond of β-lactams (azetidin-2-ones) in the rhodium(II)-catalysed reactions of more reactive diazo esters; ${ }^{47-50}$ the intramolecular insertion into β-lactam $\mathrm{N}-\mathrm{H}$ bonds is much better known and is widely used as a route to bicyclic β-lactams. ${ }^{40}$

Rhodium(iI) acetate-catalysed decomposition of 2 in the presence of simple alkylamines did not result in the formation of the corresponding $\mathrm{N}-\mathrm{H}$ insertion product, presumably as a result of catalyst poisoning. However, the overall product of insertion into the $\mathrm{N}-\mathrm{H}$ bond of a primary alkylamine can readily be obtained by use of the corresponding N-Boc derivative, the N-tert-butoxycarbonyl group being removed during the reaction (Table 1, Entry 7).

Anilines, on the other hand, react readily to give the corresponding N-aryl- α-phosphorylglycines in good yield (Table 1 , Entries 8-16). N-Aryl- α-phosphorylglycines are a poorly described group of compounds, ${ }^{51}$ and hitherto, no general method of preparation has been developed. A range of anilines was used, and the reaction is apparently insensitive to the basicity of the aniline NH_{2} group, 4-nitroaniline reacting just as readily as 4-methoxyaniline. In the case of 2-chloro-4-trifluoromethylaniline, the $\mathrm{N}-\mathrm{H}$ insertion product 18 was accompanied by the amide 19 , formed by reaction of the initial carboxylate with the excess aniline.

$19 \mathrm{Ar}=2-\mathrm{Cl}-4-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{3}$

In summary, the rhodium(iI)-catalysed $\mathrm{N}-\mathrm{H}$ insertion reaction of compound 2 represents a simple route (two steps from ethyl diethoxyphosphorylacetate) to a wide range of N-substituted amino(phosphoryl)acetates.

Experimental

For general experimental points, see the preceding paper.

General procedure for $\mathrm{N}-\mathrm{H}$ insertion reactions

A stirred solution of ethyl 2-diazo-2-diethoxyphosphorylacetate $2(250 \mathrm{mg}, 1 \mathrm{mmol})$ and the NH compound (5 mmol) in dry toluene (5 ml) was treated with rhodium(II) acetate ($9 \mathrm{mg}, 2$ $\mathrm{mol} \%)$. The mixture was heated at reflux overnight, the solvent evaporated and the residue chromatographed on silica gel (light petroleum-ether) to give the product.

Ethyl 2-tert-butoxycarbonylamino-2-diethoxyphosphorylacetate 3. Colourless crystalline solid (75%), mp $61-62^{\circ} \mathrm{C}$ (from ether-light petroleum) (lit., ${ }^{10} 64.5-65.5^{\circ} \mathrm{C}$) (Found: $\mathrm{C}, 46.0$; H, 7.9; N, 4.2. Calc. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{7} \mathrm{P}, \mathrm{C}, 46.0 ; \mathrm{H}, 7.7$; $\mathrm{N}, 4.1 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1754,1732,1250,1140$ and 1030; $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.35\left(1 \mathrm{H}\right.$, br d, exch. $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}, \mathrm{NH}\right), 4.80[1 \mathrm{H}$, dd, $J 9.07$ (exch. $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right)$ and $\left.22.55, \mathrm{CHP}\right], 4.34-4.15(6 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right)$ and $1.35-1.29(9 \mathrm{H}, \mathrm{m}, \mathrm{Me}) ; \delta_{\mathrm{C}}(67.8$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $167.2,154.9,80.7,63.7,62.3,52.2,28.2,16.3$ (d, $J 6.7)$ and 14.1; $\delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.29 ; \mathrm{ml}=(\mathrm{FAB}) 362$ $\left(\mathrm{MNa}^{+}, 100 \%\right)$ and $340\left(\mathrm{MH}^{+}, 12\right)$.

Ethyl 2-benzyloxycarbonylamino-2-diethoxyphosphorylacetate 4. Colourless crystalline solid $(78 \%), \mathrm{mp} 50-51^{\circ} \mathrm{C}$ (from ether-light petroleum) (lit., ${ }^{10} 47-48^{\circ} \mathrm{C}$) (Found: C, 51.5 ; $\mathrm{H}, 6.5 ; \mathrm{N}, 3.75$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{7} \mathrm{P}, \mathrm{C}, 51.55 ; \mathrm{H}, 6.6 ; \mathrm{N}$, $3.5 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2940,1710,1250$ and $1120 ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.37-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$, $5.25\left(2 \mathrm{H}, \mathrm{d}, J 3.4, \mathrm{PhCH}_{2}\right), 4.97$, $[1 \mathrm{H}, \mathrm{dd}, J 9.07$ (exch. $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}$) and 22.27. CHP], $4.28-4.21\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$ and $1.35-1.29(9 \mathrm{H}, \mathrm{m}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.9,155.6$, 135.9, 128.9, 128.7, 128.6, 67.5, 63.8, 63.7, 62.5, 52.7 (d, J 146.4), 16.3 (d, $J 6.8$) and $14.1 ; \delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 14.74; m / z (FAB) $374\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 59 \%\right), 192(43)$ and $91(100)$.

Ethyl 2-acetylamino-2-diethoxyphosphorylacetate 5. Colourless crystalline solid $(79 \%), \mathrm{mp} \mathrm{88-89}{ }^{\circ} \mathrm{C}$ (from ether-light petroleum) (lit., ${ }^{30} 84-85^{\circ} \mathrm{C}$) (Found: C, $42.8 ; \mathrm{H}, 7.4 ; \mathrm{N}, 5.0$. Calc. for $\left.\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{P}, \mathrm{C}, 42.7 ; \mathrm{H}, 7.2 ; \mathrm{N}, 5.0 \%\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1720,1680,1250$ and $1100 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.27$ ($1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}$, exch. $\mathrm{D}_{2} \mathrm{O}$), 5.17 (1 H, dd, $J 8.8$ and 21.9 , CHP), $4.31-4.10\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.08(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO})$ and $1.33(9 \mathrm{H}, \mathrm{m}$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.6,166.9,63.7,63.8,62.4,50.8$ (d, J 146.6), 22.9, 16.3 (d, $J 6.8$) and $14.1 ; \delta_{\mathrm{P}}(101.3 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 14.96; $m / z(\mathrm{CI}) 299\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 100 \%\right)$ and $282\left(\mathrm{MH}^{+}\right.$, 67).

Ethyl 2-diethoxyphosphoryl-2-propionylaminoacetate 6. Colourless crystalline solid ($56^{\prime \prime} \%$), mp $39-40^{\circ} \mathrm{C}$ (Found: M^{+}, 295.1188. $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{NO}_{6} \mathrm{P}$ requires $M, 295.1185$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1743,1633$ and $1250 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.30(1 \mathrm{H}, \mathrm{br}$ d, $J 8, \mathrm{NH}$, exch. $\mathrm{D}_{2} \mathrm{O}$), 5.17 ($1 \mathrm{H}, \mathrm{dd}, J 8.8$ and $22.1, \mathrm{CHP}$), 4.18 $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.30\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{CONH}\right), 1.33(9 \mathrm{H}, \mathrm{m}$, $\mathrm{Me})$ and $1.18(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.6$, 167.3, 64.1, 62.8, 51.0 (d, J 145.4), 29.7, 16.6 (d, $J 6.8$), 14.4 and 9.7; $\delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 15.28; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 295\left(\mathrm{M}^{+}, 5 \%\right), 250$ (10), 222 (11), 166 (100), 138 (80), 102 (40), 82 (20), 65 (22), 57 (80) and 44 (8).

Ethyl 2-diethoxyphosphoryl-2-(3-methylbutanoylamino)acetate 7. Pale yellow crystalline solid (76%), mp $57-58^{\circ} \mathrm{C}$ (Found: C, 48.4; H, 8.3; N, 4.3. $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{P}$ requires $\mathrm{C}, 48.3$; $\mathrm{H}, 8.1 ; \mathrm{N}, 4.3 \%$) (Found: $\mathrm{M}^{+}, 323.1499 . \mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NO}_{6} \mathrm{P}$ requires $M, 323.1497$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1710,1677,1221$ and 1025; $\delta_{\mathrm{H}}\left(360 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.17\left(1 \mathrm{H}\right.$, br d, $J 7.6$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right)$, $5.16(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and $22.0, \mathrm{CHP}), 4.20-4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$, 4.10-4.06 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.09-2.05\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}\right.$ and $\left.\mathrm{CH}_{2}\right)$, $1.25(9 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{Me})$ and $0.90\left(6 \mathrm{H}, \mathrm{d} J 7.6, \mathrm{Me}_{2} \mathrm{CH}\right) ; \delta_{\mathrm{C}}(67.8$
$\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 172.0, 166.6, 63.4 (d, J 67.8), 63.3 (d, J 67.8), 62.0, 50.2 (d, $J 162.7$), 45.1, 25.8, 22.2, 16.1 (d, $J 6.8$) and 13.8; $\delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.16 ; \mathrm{m} / \mathrm{z}$ (EI) $324\left(\mathrm{MH}^{+}, 54 \%\right), 281$ (66), 235 (42), 166 (100), 138 (72), 102 (38), 85 (65), 69 (22), 57 (99), 41 (83) and 29 (76).

Ethyl 2-diethoxyphosphoryl-2-[N-methylcarbamoyl]aminoacetate 8. Colourless crystalline solid (40%), $\mathrm{mp} 50-51^{\circ} \mathrm{C}$ (from ether-light petroleum) (lit., ${ }^{37}{ }^{49-50}{ }^{\circ} \mathrm{C}$) (Found: M^{+}, 296.1137. Calc. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}, M, 296.1137$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3350,2930,1720,1675,1250$ and 1030; $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 6.04\left(1 \mathrm{H}, \mathrm{br}\right.$ s, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right), 5.21(1 \mathrm{H}$, br s, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NHMe}\right), 5.09$ (1 H , dd, J 9.3 and 22.54 , CHP), 4.30$4.11\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 2.78(3 \mathrm{H}, \mathrm{d}, J 4.4, \mathrm{MeNH})$ and 1.33 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Me}$); $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 167.9,158.2,64.5,63.7$, $62.1,51.4(\mathrm{~d}, J 143.5), 26.9,16.3(\mathrm{~d}, J 6.2)$ and $14.0 ; \delta_{\mathrm{P}}(101.3$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 16.64; m/z (CI) $314\left(\mathrm{M}+\mathrm{NH}_{4}{ }^{+}, 10 \%\right)$ and 297 ($\mathrm{MH}^{+}, 52$).
Ethyl 2-diethoxyphosphoryl-2-propylaminoacetate 9. Colourless oil (46%) (Found: $\mathrm{M}^{+}, 281.1047 . \mathrm{C}_{11} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}$ requires M. 281.1392); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1740$ and 1257; $\delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 5.38\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right), 5.36(1 \mathrm{H}, \mathrm{d}, J 17.5$, CHP), 4.28-4.11 ($6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), $3.12(2 \mathrm{H}, 2$ overlapping t , $\mathrm{CH}_{2} \mathrm{~N}$), $1.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 1.28(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Me})$ and $0.86(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{Me}), \delta_{\mathrm{c}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.1,68.6(\mathrm{~d}, J$ 160.4), 63.7, 62.0, 42.0, 22.8, 16.2 (d, J 6.7), 13.9 and 14.1; $\delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.56 ; m / z(\mathrm{EI}) 281\left(\mathrm{M}^{+}, 2 \%\right), 280(12)$, 240 (14), 197 (22), 167 (95), 155 (35), 138 (38), 111 (85), 69 (100) and 43 (23).
Ethyl 2-diethoxyphosphoryl-2-phenylaminoacetate 10. Colourless crystalline solid (72%), $\mathrm{mp} 56^{\circ} \mathrm{C}$ (from ether-light petroleum) (lit., ${ }^{51} 55-56{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{M}^{+}, 315.1232$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{5} \mathrm{P}, M, 315.1236$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720,1240$ and $1120 ; \delta_{\mathbf{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.18(2 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{t}$, $J 7.2, \mathrm{ArH}), 6.77(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 4.54\left(1 \mathrm{H}, \mathrm{s}\right.$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right)$, $4.51(1 \mathrm{H}, \mathrm{d}, J 24, \mathrm{CHP}), 4.26-4.17\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$ and $1.36-1.24(9 \mathrm{H}, \mathrm{m}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.4,146.2$, 129.3, 120.0, 114.1, 64.3, 63.6, 62.2, 56.5 (d, J 147.6, CHP), 22.9, 16.4 and $14.1 ; \delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 16.14; m / z (FAB) $316\left(\mathrm{MH}^{+}, 29 \%\right), 315\left(\mathrm{M}^{+}, 31\right), 242(12), 178$ (100), 139 (6), 104 (36) and 77 (5).

Ethyl 2-diethoxyphosphoryl-2-(4-methylphenylamino)acetate 11. Beige crystalline solid $(73 \%), \mathrm{mp} 76-77^{\circ} \mathrm{C}$ (from etherlight petroleum) (Found: C, 54.8; H, 7.4; N, 3.8. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{P}$ requires C, $54.7 ; \mathrm{H}, 7.35 ; \mathrm{N}, 4.25 \%)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1725$, 1255 and $1150 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.99(2 \mathrm{H}, \mathrm{d}, J 8.30, \mathrm{ArH})$, $6.60\left(2 \mathrm{H}, \mathrm{d}, J 8.30, \mathrm{ArH}\right.$), 4.72 (1 H , br s, exch. $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$), 4.46 ($1 \mathrm{H}, \mathrm{d}, J 23.2, \mathrm{CHP}$), 4.30-4.12 ($6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), $2.24(3 \mathrm{H}, \mathrm{s}$, ArMe) $1.39-1.32(6 \mathrm{H}, \mathrm{m}, \mathrm{Me})$ and $1.27(3 \mathrm{H}, \mathrm{t}, J 7.14, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.6,143.8,129.8,128.7,114.2,64.0(\mathrm{~d}$, $J 7.2$), 63.5, 62.1, 56.8 (d, $J 149.5$), 20.4, 16.4 (d, $J 6.7$) and 14.1; $\delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.21 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 330\left(\mathrm{MH}^{+}, 35 \%\right), 329$ ($\mathrm{M}^{+}, 51$), 256 (13), 192 (100) and 118 (47).
Ethyl 2-diethoxyphosphoryl-2-(4-methoxyphenylamino)acetate 12. Colourless crystalline solid (70%), $\mathrm{mp} 55-56^{\circ} \mathrm{C}$ (from ether-light petroleum) (Found: $\mathrm{M}^{+}, 345.1344$. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NPO}_{6}$ requires $\left.M, 345.1341\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1718$, 1250 and $1130 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.86(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1, \mathrm{ArH})$, $6.74(2 \mathrm{H}, \mathrm{d}, J 9.1, \mathrm{ArH}), 4.55$ ($1 \mathrm{H}, \mathrm{d}, J 22.3, \mathrm{CHP}$), $4.37-4.32$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$ and $1.46-1.27(9 \mathrm{H}, \mathrm{m}, \mathrm{Me})$; $\delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 168.6,153.5,140.2,115.7,114.8,64.0(\mathrm{~d}$, $J 6.4, \mathrm{CH}_{2} \mathrm{OP}$), 63.5 (d, $J 7.3$), $62.1,57.5$ (d, J 149.5), $55.5,16.4$ (d, $J 6.8$) and $14.1 ; \delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 16.12; m/z (FAB) 346 ($\left.\mathrm{MH}^{+}, 49 \%\right), 315$ (12), 272 (6), 225 (8), 208 (87), 134 (74), 93 (100), 75 (33) and 57 (26).

Ethyl 2-diethoxyphosphoryl-2-(4-nitrophenylamino)acetate 13. Pale yellow solid (81%), $\mathrm{mp} 96-97^{\circ} \mathrm{C}$ (from ether-light petroleum) (Found: C, 46.8; H, 5.9; N, 7.6. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{P}$ requires C , 46.6; H, 5.9; N, $7.8 \%)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 2960,1720,1590$, $1490,1330,1260$ and $1120 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.22(2 \mathrm{H}, \mathrm{d}$, $J 9.34, \mathrm{ArH}), 6.75(2 \mathrm{H}, \mathrm{d}, J 9.34, \mathrm{ArH}), 5.38$ ($1 \mathrm{H}, \mathrm{dd}, J 8.25$,
exch. $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$), 4.68 (1 H , dd, $J 21.75$ and $8.25, \mathrm{CHP}$), $4.35-4.24\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$ and $1.41(9 \mathrm{H}, \mathrm{m}, \mathrm{Me}) ; \delta_{\mathrm{c}}(67.8 \mathrm{MHz}$; CDCl_{3}) 167.2, 151.2, 139.7, 126.2, 112.4, 64.2 (d, J7), 63.9 (d, J 7), 62.8, 55.4 (d, J 147.4), 16.4 (d, $J 6.8$) and $14.1 ; \delta_{\mathrm{p}}(101.3$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 14.77; m/z (FAB) $361\left(\mathrm{M}^{+}, 35 \%\right)$, 345 (47), 287 (20), 271 (15), 259 (10), 223 (82), 207 (52), 195 (13), 178 (23), 149 (70), 139 (100), 121 (27), 111 (42), 103 (35), 93 (30), 83 (42), 77 (13) and 65 (33).
Ethyl 2-(4-chlorophenylamino)-2-diethoxyphosphorylacetate 14. Colourless crystalline solid (71%), $\mathrm{mp} 80-81^{\circ} \mathrm{C}$ (from ether-light petroleum) (Found: C, 48.0; H, 6.0; N, 4.1. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{ClNO}_{5} \mathrm{P}$ requires $\left.\mathrm{C}, 48.1 ; \mathrm{H}, 6.05 ; \mathrm{N}, 4.0 \%\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1715,1245,1130$ and $1090 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.14(2 \mathrm{H}, \mathrm{d}, J 8.79, \mathrm{ArH}), 6.61(2 \mathrm{H}, \mathrm{d}, J 8.79, \mathrm{ArH})$, 4.57 (1 H, br s, exch. $\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}$), $4.44(1 \mathrm{H}, \mathrm{d}, J 22.27, \mathrm{CHP}$), 4.22-4.17 ($6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$) and 1.36-1.24 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Me}$); $\delta_{\mathrm{C}}(100.6$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $168.1,144.8,129.2,124.2,115.2,64.4,64.1,62.3$, $56.6(\mathrm{~d}, J 147.7), 16.4(\mathrm{~d}, J 6.8)$ and $14.1 ; \delta_{\mathrm{P}}\left(101.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 15.78; $\mathrm{m} / \mathrm{z}(\mathrm{FAB}) 372\left(\mathrm{MNa}^{+}, 41 \%\right), 350\left(\mathrm{MH}^{+}, 27\right), 325(12)$, 293 (8), 267 (58), 245 (35), 212 (38), 189 (24) and 167 (34).

Ethyl 2-diethoxyphosphoryl-2-(2-methoxyphenylamino)acetate 15. Colourless oil (74%) (Found: \mathbf{M}^{+}, 345.1341. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{6} \mathrm{P}$ requires $M, 345.1341$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$, 1250 and $1135 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.86-6.72(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 6.56 ($1 \mathrm{H}, \mathrm{d}, J 7.8, \mathrm{ArH}$), $5.15\left(1 \mathrm{H}, \mathrm{d}, J 9.0\right.$, exch. $\left.\mathrm{D}_{2} \mathrm{O}, \mathrm{NH}\right)$, $4.55(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and $22.6, \mathrm{CHP}), 4.30-4.15\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right)$, $3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 1.33\left(6 \mathrm{H}, \mathrm{dt}, J 11.2\right.$ and $\left.7.15, \mathrm{MeCH}_{2} \mathrm{OP}\right)$ and $1.27(3 \mathrm{H}, \mathrm{t}, J 7.15, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 166.5$, 147.6, 136.2, 121.0, 118.0, 110.9, 110.0, 63.9 (d, J 6.85), 63.3 (d, $J 6.85), 62.1,56.2$, (d, $J 147.2$), 55.6, 16.4 (d, $J 6.8$) and 14.1; $\delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.18 ; \mathrm{m} / \mathrm{z}(\mathrm{CI}) 346\left(\mathrm{MH}^{+}, 27 \%\right), 345$ $\left(\mathrm{M}^{+}, 39\right), 272(12), 208$ (100 and 134 (42).
Ethyl 2-(2-bromophenylamino)-2-diethoxyphosphorylacetate 16. Pale yellow oil (70\%) (Found: \mathbf{M}^{+}, 393.0357. $\mathrm{C}_{14} \mathrm{H}_{21}{ }^{79} \mathrm{BrNO}_{5} \mathrm{P}$ requires $M, 393.0341$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1720,1250 and $1134 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.42(1 \mathrm{H}, \mathrm{d}, J 9.25$, ArH), 7.13 ($1 \mathrm{H}, \mathrm{d}, J 8.75$, ArH), 6.65-6.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 5.22 $\left(1 \mathrm{H}, \mathrm{brt}, J 8.5, \mathrm{NH}\right.$, exch. $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.50(1 \mathrm{H}, \mathrm{dd}, J 22.5$ and 8.5 , CHP), 4.25-4.16 ($6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), 1.34-1.21 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Me}$); $\delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 167.7, 143.1, 132.6, 128.4, 119.7, 112.2, 110.7, 64.0 (d, J 6.1, $\mathrm{CH}_{2} \mathrm{OP}$), 63.7 (d, J 7.0), 62.3, 56.2 (d, J 156.3), 16.3 (d, $J 6.8$) and $14.0 ; \delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 15.19$; m / z (EI) $395 / 393\left(\mathrm{M}^{+}, 30 \%\right), 256 / 258(90)$ and 182/184 (100).
Ethyl 2-diethoxyphosphoryl-2-(2,6-dimethylphenylamino)acetate 17. Colourless oil (71%) (Found: M^{+}, 343.1546. $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{5} \mathrm{P}$ requires $M, 343.1549$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$, 1260 and $1130 ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.95(2 \mathrm{H}, \mathrm{d}, J 7.24, \mathrm{ArH})$, 6.80 (1 H , dd, $J 7.98$ and 8.55 , ArH), 4.44 ($1 \mathrm{H}, \mathrm{d}, J 23.37, \mathrm{CHP}$), 4.26-4.10 ($6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$), $2.36(6 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 1.34(6 \mathrm{H}, \mathrm{dt}, J$ 7.15 and 6.88 , Me) and $1.21(3 \mathrm{H}, \mathrm{t}, J 7.15, \mathrm{Me}) ; \delta_{\mathrm{C}}(67.8 \mathrm{MHz}$; CDCl_{3}) 169.1, 143.3, 129.1, 128.7, 122.3, 63.7 (d, J7.3), 63.3 (d, $J 7.3$), 61.9, 58.8 (d, J 144.3), 18.6, 16.4, (d, $J .2$) and 14.0; $\delta_{\mathrm{P}}\left(101.3 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.87$; $\mathrm{m} / \mathrm{z}(\mathrm{CI}) 344\left(\mathrm{MH}^{+}, 100 \%\right)$ and 206 (4).

Ethyl 2-(2-chloro-4-triffuoromethylphenylamino)-2-diethoxyphosphorylacetate 18. Colourless oil (61%) (Found: M^{+}, 417.0724. $\quad \mathrm{C}_{15} \mathrm{H}_{20}{ }^{35} \mathrm{ClF}_{3} \mathrm{NO}_{5} \mathrm{P}$ requires M, 417.0720); $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3370,1743,1293,1241$ and $1020 ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.54(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 7.38(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 6.69$ ($1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}$), $5.54(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 8.5), 4.55(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 21.2, CHP), 4.40-4.12 ($6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}$) and 1.39-1.29 $(9 \mathrm{H}$, $\mathrm{m}, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 167.3,144.8,126.7,125.9,125.1$, 121.9, 121.3, 120.8, 120.0, 111.3, 64.2 (d, J7.3), 64.0 (d, J 7.3), $62.7,55.8(\mathrm{~d}, J 148.4), 16.4(\mathrm{~d}, J 5.2)$ and $14.1 ; \delta_{\mathrm{p}}(101.3 \mathrm{MHz}$; CDCl_{3}) 14.68; m/z (FAB) $418\left(\mathrm{MH}^{+}, 47 \%\right), 417\left(\mathrm{M}^{+}, 45\right), 398$ (22), 344 (28), 280 (100), 206 (85) and 139 (55). Compound 19 was also formed during the reaction.

Diethyl 1,2-bis(2-chloro-4-trifluoromethylphenylamino)-2oxoethylphosphonate 19. Colourless oil (25%) (Found: \mathbf{M}^{+}, 566.0362. $\quad \mathrm{C}_{20} \mathrm{H}_{19}{ }^{35} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}$ requires M, 566.0364);
$\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1680,1281$ and 1026; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $9.22(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NHCO}), 8.55(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 7.62(2 \mathrm{H}, \mathrm{d}$, $J 8.8, \mathrm{ArH}) 7.55(1 \mathrm{H}, \mathrm{d}, J 8.8, \mathrm{ArH}), 7.42(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}$), $6.73(1 \mathrm{H}, \mathrm{d}, J 8.5, \mathrm{ArH}), 5.79(1 \mathrm{H}, \mathrm{dd}, J 5.2, J 9.9$, CHNH), $4.51(1 \mathrm{H}, \mathrm{dd}, J 5.2$ and $21.7, \mathrm{CHP}), 4.27(4 \mathrm{H}, \mathrm{dt}, J 7.2$ and 8.2 , $\left.\mathrm{OCH}_{2}\right)$ and $1.37(6 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{Me}) ; \delta_{\mathrm{C}}\left(67.8 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $164.4,144.8,136.9,129.7,126.8,126.4,125.3,125.0,124.5$, 123.3, 122.1, 121.2, 120.6, 111.9, 64.7 (d, $J 7.3$), 64.5 (d, J7.3), 57.8 (d, $J 144.4$) and 16.4 (d, $J 5.6$); $\delta_{\mathbf{p}}\left(101.3 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 15.55; m / z (FAB) $589\left(\mathrm{MNa}^{+}, 67 \%\right), 567\left(\mathrm{MH}^{+}, 31\right), 429(25)$, 345 (57), 206 (100) and 139 (73).

Acknowledgements

We thank Loughborough University and SmithKline Beecham Pharmaceuticals for their support of this research and the EPSRC for funds towards the purchase of a 400 MHz NMR spectrometer. We also thank the EPSRC Mass Spectrometry Centre at Swansea for mass spectra.

References

1 For Part 1, see J. Chem. Soc:, Perkin Trans. 1, 1996, 2879, preceding paper.
2 Preliminary communication, L. Ferris, D. Haigh and C. J. Moody, Synlett, 1995, 921.
3 R. W. Ratcliffe and B. G. Christensen, Tetrahedron Lett., 1973, 4645.
4 R. W. Ratcliffe and B. G. Christensen, Tetrahedron Lett., 1973, 4649.
5 L. S. Hegedus, L. M. Schultze, J. Toro and C. Yijun, Tetrahedron, 1985, 41, 5833.
6 P. Herdewijn, P. J. Claes and H. Vanderhaeghe, J. Med. Chem., 1986, 29, 661.
7 T. Ogasa, H. Saito, Y. Hashimoto, K. Sato and T. Hirata, Chem. Pharm. Bull., 1989, 37, 315.
8 Y. Narukawa, K. N. Juneau, D. Snustad, D. B. Miller and L. S. Hegedus, J. Org. Chem., 1992, 57, 5453.

9 B. T. Lotz and M. J. Miller, J. Org. Chem., 1993, 58, 618.
10 U. Schmidt, A. Lieberknecht, U. Schanbacher, T. Beuttler and J. Wild, Anger: Chem., Int. Ed. Engl., 1982, 21, 776.

11 U. Schmidt, A. Lieberknecht and J. Wild, Synthesis, 1984, 53.
12 C. Shin, T. Obara, S. Segami and Y. Yonezawa, Tetrahedron Lett., 1987, 28, 3827.
13 C. Shin, Y. Yonezawa, T. Obara and H. Nishio, Bull. Chem. Soc. Jpn., 1988, 61, 885.
14 P. G. Ciattini, E. Morera and G. Ortar, Synthesis, 1988, 140.
15 D. Kim, Y. Li, B. A. Horenstein and K. Nakanishi, Tetrahedron Lett., 1990, 31, 7119.
16 C. Shin, N. Takahashi and Y. Yonezawa, Chem. Pharm. Bull., 1990, 38, 2020.
17 E. J Moran and R. W. Armstrong, Tetrahedron Lett., 1991, 32, 3807.
18 U. Schmidt, A. Kleefeldt and R. Mangold, J. Chem. Soc., Chem. Commun., 1992, 1687.
19 U. Schmidt, H. Griesser, V. Leitenberger, A. Lieberknecht, R. Mangold, R. Meyer and B. Riedl, Synthesis, 1992, 487.

20 R. W. Armstrong, J. E. Tellew and E. J. Moran, J. Org. Chem., 1992, 57, 2208.
21 U. Schmidt and B. Riedl, Synthesis, 1993, 815.
22 R. S. Coleman and A. J. Carpenter, J. Org. Chem., 1993, 58, 4452.
23 J. E. Baldwin, K. D. Merritt and C. J. Schofield, Tetrahedron Lett., 1993, 34, 3919.
24 H.-J. Kreuzfeld, C. Döbler, H. W. Krause and C. Facklam, Tetrahedron: Asymmetry, 1993, 4, 2047.
25 K. Sato, T. Miyata, I. Tanai and Y. Yonezawa, Chem. Lett., 1994, 129.

26 R. C. Holcomb, S. Schow, S. Ayral-Kaloustian and D. Powell, Tetrahedron Lett., 1994, 35, 7005.
27 M. Seki, K. Kondo and T. Iwasaki, J. Chem. Soc., Perkin Trans. I, 1996, 3; M. Seki and K. Matsumoto, Synthesis, 1996, 580.
28 R. W. Armstrong, J. E. Tellew and T. R. Hoye, Tetraliedron Lett., 1996, 37, 447.
29 H. Gross and J. Freiberg, Angelw: Chem., Int. Ed. Eng., 1965, 4. 975.

30 R. Kober and W. Steglich, Liebigs Ann. Chem., 1983, 599.
31 B. Ku and D. Y. Oh, Tetraliedron Lett., 1988, 29, 4465.
32 M. Daumas, L. Vo-Quang and E. L. Goffic, Synth. Commun., 1990, 22, 3395.
33 R. Shankar and A. I. Scott, Tetrahtedron Lett., 1993, 34, 231.
34 M. Vaultier, M. S. Ouali and R. Carriè, Bull. Soc. Chim. Fr., 1979, 343.

35 D. I. C. Scopes, A. F. Kluge and J. A. Edwards, J. Org. Chem., 1977, 42, 376.
36 E. W. Colvin, G. W. Kirby and A. C. Wilson, Tetrahedron Lett., 1982. 23, 3835.

37 P. S. Khokhlov, B. A. Kashemirov, A. D. Mikityuk and Y. A. Strepikheev, Zh. Obshch. Khim., 1983, 53, 2146.
38 C. Shiraki, H. Saito, K. Takahashi, C. Urakawa and T. Hirata, Synthesis, 1988, 399.
39 G. H. Hakimelahi and G. Just, Synth. Conmmun, 1980, 10, 429.
40 For a comprehensive list of references, see J. Chem. Soc., Perkin Trans. 1, 1996, 2879, preceding paper.
41 M. Regitz, W. Anschütz and A. Liedhegener, Chem. Ber, 1968, 101, 3734.

42 C. J. Moody, E.-R. H. B. Sie and J. J. Kulagowski, Tetrahedron, 1992, 48, 3991.
43 M. McGuiness and H. Shechter, Tetraliedron Lett., 1990, 31, 4987.
44 D. J. Miller, Loughborough University, unpublished result.
45 G. G. Cox, D. J. Miller, C. J. Moody, E.-R. H. B. Sie and J. J. Kulagowski, Tetrahedron, 1994, 50, 3195.

46 G. Bartels, R.-P. Hinze and D. Wullbrandt, Liebigs Ann. Chem., 1980, 168.
47 G. Brooks, T. T. Howarth and E. Hunt, J. Chem. Soc:, Chem. Commun., 1981, 642.
48 P. G. Mattingly and M. J. Miller, J. Org. Chem., 1981, 46, 1557.
49 T. Kametani, N. Kanaya, T. Mochizuki and T. Honda, Heterocycles, 1982, 19, 1023.
50 M. Hrytsak and T. Durst, Heterocycles, 1987, 26, 2393.
51 D. Haigh, Tetrahedron, 1994, 50, 3177.
Paper 6/04713K
Received 5th July 1996
Accepted 13th August 1996

